Computer Vision at the Edge and in the Cloud: Architectures, Algorithms, Processors, and Tools

IEEE Signal Processing Society Santa Clara Valley Chapter -- April 11, 2018

Jeff Bier

Founder, Embedded Vision Alliance General Chairman, Embedded Vision Summit President, BDTI www.Embedded-Vision.com bier@embedded-vision.com

embedded

VISION

LLIANCE

A World-Changing Technology

- Visual perception is rapidly becoming ubiquitous, because:
 - Value: Perceptive devices can be much more capable, safer, more autonomous, more secure and easier to use
 - **Effectiveness:** Vision algorithms are becoming good enough to be useful in the real world
 - **Affordability:** Advances in enabling technologies are shrinking the cost and power consumption required to deploy vision

The Big Picture

"Computer vision" has crossed the chasm from expensive niche technology to become "embedded vision," a ubiquitous technology

- Rapidly expanding, large-scale deployments in diverse markets: consumer, automotive, healthcare, entertainment, defense, retail, security, ...
- Implemented in embedded systems, the cloud, mobile devices, wearables

Making Things More Autonomous, Efficient, Capable, Ease to Use

Image: WBUR

Amazon Go

https://www.youtube.com/watch?v=NrmMk1Myrxc

Perception Algorithms are Hard

dot.gov

WHEN A USER TAKES A PHOTO, THE APP SHOULD CHECK WHETHER THEY'RE IN A NATIONAL PARK ... SURE, EASY GIS LOOKUP. GIMME A FEW HOURS. ... AND CHECK WHETHER THE PHOTO IS OF A BIRD. I'LL NEED A RESEARCH TEAM AND FIVE YEARS.

embedded

CE

xkcd.com

© 2018 Embedded Vision Alliance

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Breakthrough

 Over the past 5 years, deep neural networks have enabled big advances in accuracy for many machine perception tasks

Use of Neural Networks to Perform Computer Vision Functions

Processors

For decades, chip designers have created specialized processors to get big gains in cost/performance and energy-efficiency

Type of Processor Used for Vision Tasks

Embedded Vision Alliance Developer Survey, November 2017 vs. February 2017

© 2018 Embedded Vision Alliance

10

Today, dozens of chip and IP core suppliers are creating processors <u>specialized</u> for deep neural networks

embedo

Pierre Paulin, Synopsys

IPU 2.0 ACCELERATORS sub-system

DEEP LEARNING ENGINE
~ 3 M gates, 1 MB SRAM,
30 mW @ 30 frames/second
FotoNation*

Petronel Bigioi, FotoNation

11

Cloud - Fog - Edge

Image: erpinnews.com

Attributes of Cloud Computing

5 Essential Characteristics of Cloud Computing

Ref: The NIST Definition of Cloud Computing http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Image: microsoft.com

3 Cloud Service Delivery Methods

Image: microsoft.com

Public Cloud vs. Private Cloud

Image: microsoft.com

embedded

Cloud Providers

Off-the-shelf Cloud Computer Vision APIs

- Cloud-hosted APIs support common vision functions:
 - Object recognition/detection
 - Face recognition
 - People tracking
 - Age, gender, emotion analysis
 - Optical character recognition (including handwriting)
 - Scene analysis

Tools and Frameworks to Build Your Own

- Cloud-hosted tools and frameworks facilitate creating your own vision functions and applications:
 - Pre-configured virtual machines (e.g., AWS AMIs)
 - Higher-level platforms (e.g., Amazon SageMaker)

omhoo

Edge or Cloud?

Trade-offs

	Edge	Cloud
Time-to-market		~~~
Upgradability		~~
Accuracy		<i>\\\</i>
Coordination among distributed devices		~ ~ ~ ~
Device cost		~~
Recurring costs	$\checkmark\checkmark\checkmark$	
Internet connectivity, bandwidth required	$\checkmark\checkmark\checkmark$	
Response time	$\checkmark\checkmark\checkmark$	
Privacy/security	v	

= Advantage

Technology Advances Unevenly

	Edge	Cloud
Latest algorithms	$\checkmark\checkmark$	ノノノ
More powerful and efficient processors	~ ~ ~ ~	~
Better software development tools	✓	VVV

= Available sooner

How is Your Neural Network Deployed?

DJI Phantom 4

https://www.youtube.com/watch?v=JJPSSqMQajA

Case Study: Remote Check Deposit

CHRIS L. MARTIN 123 YOUR STREET ANYWHERE, U.S.A. 12345	i en la	1/11/10	101
matthe Matthe	w D. Lee	1\$	2,11.00
Two hundred a	ind bleven ——		toten 🛛 📰
Bank of America	*		
14	(lives I. MI	artino -
4000000000	123-456 ?* 010	•	

Image: Bank of America

embedded

N C E

Case Study: Camio Video Monitoring

© 2018 Embedded Vision Alliance

embedded

ĈE

S

Cozmo by Anki

https://www.youtube.com/watch?v=o2FAMzhi2Eo

Case Study: Anki's Cozmo Interactive Robot

Image: Target.com

Image: Anki

embedded

AWS DeepLens

AWS DEEPLENS ARCHITECTURE

Dee – DeepLens Educating Entertainer

https://www.youtube.com/watch?v=dTXblzhq_po

What Does This Mean?

- Thanks to improved algorithms, processors, tools and cloud services, thousands of diverse systems are now integrating vision...
- ...making them safer, more autonomous, easier to use and more capable
- Cloud platforms and services ease development and deployment for many applications
- The best allocation of processing to edge, fog and cloud requires balancing complex trade-offs unique to each application

embed

Empowering Product Creators to Harness Embedded Vision

The **Embedded Vision Alliance** (<u>www.Embedded-Vision.com</u>) is a partnership of 75+ leading embedded vision technology and systems companies

Mission: Inspire and empower product creators to incorporate visual intelligence into their products

The Alliance provides practical technical educational resources for product developers

- Website offers tutorial articles, video presentations, etc.
- Register for the newsletter at <u>www.Embedded-Vision.com</u>

Alliance membership provides companies with early insights and connections to customers and partners

31

Embedded Vision Insights

Join Us At the Embedded Vision Summit

The only industry event focused on enabling developers to create "machines that see"

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2018 highlights:

- Inspiring keynotes by leading innovators
- Practical technical, business and product talks
- Learn edge and cloud vision techniques and trade-offs
- New: Hands-on TensorFlow class May 21
- Visit <u>www.EmbeddedVisionSummit.com</u> for details

Enabling Computer Vision, At the Edge and In the Cloud

> May 21-24, 2018 Santa Clara, California

Embedded Vision Alliance Member Companies

Questions?

Email me for:

- PDF file of these slides
- Details about the Embedded Vision Summit, May 21-24, 2018 in Santa Clara, California
- Information about how your company can become a Member of the Embedded Vision Alliance

Jeff Bier

Founder, Embedded Vision Alliance Chairman, Embedded Vision Summit President, BDTI www.Embedded-Vision.com bier@embedded-vision.com +1 925-954-1411 Walnut Creek, CA 94596 U.S.A.