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The Embedded Vision Alliance (www.Embedded-Vision.com) is
a partnership of 50+ leading embedded vision technology and 
services suppliers

Mission: Inspire and empower product creators to incorporate 
visual intelligence into their products

The Alliance provides high-quality, practical technical educational 
resources for engineers

• Alliance website offers tutorial articles, video “chalk talks,”
forums

• Embedded Vision Insights newsletter delivers news and 
updates

Register for updates at www.Embedded-Vision.com

Empowering Product Creators to 
Harness Embedded Vision
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http://www.embedded-vision.com/
http://www.embedded-visionsummit.com/


Alliance Member Companies
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Want to get a jump start in using convolutional neural 
networks (CNNs) for vision applications?

Sign up for a day-long tutorial on CNNs for deep learning 
with hands-on lab training on the Caffe software framework.

• How CNNs work, and how to use them for vision

• How to use Caffe to design, train, and deploy CNNs

September 22nd, 9 am to 5 pm, in Cambridge, Massachusetts
Register at  http://www.embedded-vision.com/caffe-tutorial 
• Use promo code “CNN16-0824” for a 10% discount
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Hands-on Tutorial on Deep Learning and Caffe

http://www.embedded-vision.com/caffe-tutorial


Speakers (and Caffe developers)
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Why Deep Learning? 
End-to-End Learning for Many Tasks

vision speech text control
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Visual Recognition Tasks
Classification
‑ what kind of image?
‑ which kind(s) of objects?

Challenges
‑ appearance varies by

lighting, pose, context, ...
‑ clutter
‑ fine-grained categorization

(horse or exact species)
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❏ dog
❏ car
❏ horse
❏ bike
❏ cat
❏ bottle
❏ person



Image Classification: ILSVRC 2010-2015

[graph credit K. He] 8
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Visual Recognition Tasks
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car   person   horse

Detection
‑ what objects are there?
‑ where are the objects?

Challenges
‑ localization
‑ multiple instances
‑ small objects



Detection: PASCAL VOC

[graph credit R. Girshick] 11
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Semantic Segmentation
- what kind of thing

is each pixel part of?
- what kind of stuff

is each pixel?

Challenges
- tension between

recognition and localization
- amount of computation

Visual Recognition Tasks
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Segmentation: PASCAL VOC
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 deep learning with Caffe

end-to-end networks lead to
30 points absolute or 50% relative improvement
and >100x speedup in 1 year!

(papers published for +1 or +2 points)

FCN:
pixelwise 
convnet

state-of-the-art, 
in Caffe

Leaderboard
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http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/ 

All in a day’s work with Caffe
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http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/
http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/


Shallow Learning

[slide credit K. Cho]

Separation of hand engineering and machine learning
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Hand-Engineered Features
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Features from years of vision expertise by the whole community are now 
surpassed by learned representations and these transfer across tasks

 

[figure credit R. Fergus]



Deep Learning

19[slide credit K. Cho]
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End-to-End Learning Representations

The visual world is too vast and varied
to fully describe by hand

Learn the representation from data
local appearance parts and texture objects and semantics

[figure credit H. Lee]
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End-to-End Learning Tasks

The visual world is too vast and varied
to fully describe by hand

Learn the task from data
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Designing for Sight

Convolutional Networks or convnets are nets for vision

- functional fit for the visual world
by compositionality and feature sharing

- learned end-to-end to handle visual detail
for more accuracy and less engineering

Convnets are the dominant architectures for visual tasks
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Visual Structure
Local Processing: pixels close together go together
receptive fields capture local detail

Across Space: the same what, no matter where
recognize the same input in different places
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Visual Structure
Local Processing: pixels close together go together
receptive fields capture local detail

Across Space: the same what, no matter where
recognize the same input in different places

Can rely on spatial coherence This is not a cat

All of these are cats
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Convnet Architecture

Input Image Scores

Conv 3x3s1, 10 / ReLU Type: Conv  Kernel Size: 3x3  Stride: 1  Channels:10  Activation: ReLU

FC 10

Conv 3x3s1, 10 / ReLU

Max Pool 3x3s1

Conv 3x3s1, 10 / ReLU

Conv 3x3s1, 10 / ReLU

Conv 3x3s1, 10 / ReLU

Max Pool 3x3s1

Conv 3x3s1, 10 / ReLU

Max Pool 3x3s1

Conv 3x3s1, 10 / ReLU

Stack convolution, non-linearity, and pooling until global FC layer classifier

[figure credit A. Karpathy]



Why Now?
1. Data

ImageNet et al.: millions of labeled (crowdsourced) images

2. Compute
GPUs: terabytes/s memory bandwidth, teraflops compute

3. Technique
new optimization know-how,
new variants on old architectures,
new tools for rapid experimentation
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Why Now? Data

For example:

>10 million labeled images
>1 million with bounding boxes

>300,000 images with labeled and segmented objects
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Why Now? GPUs

Parallel processors
for parallel models:

Inherent Parallelism
same op, different data

Bandwidth
lots of data in and out

Tuned Primitives
cuDNN and cuBLAS
for deep nets for matrices 29



Why Now? Technique
Non-convex and high-dimensional learning is okay
with the right design choices

e.g. non-saturating non-linearities

Learning by Stochastic Gradient Descent (SGD) with momentum and 
other variants

instead of
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framework

Why Now? Deep Learning Frameworks

network
internal 

representation

tools:
visualization, profiling, 
debugging, etc.

layer library:
fast implementations 
of common functions 
and gradients

backend:
dispatch compute for 
learning and inference 

frontend:
a language for any 
network, any task
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Deep Learning Frameworks

all open source
we like to brew our networks with Caffe

Caffe
Berkeley / BVLC
C++ / CUDA, 
Python, MATLAB

Torch
Facebook + NYU
Lua (C++)

Theano
U. Montreal
Python

TensorFlow
Google
Python (C++)
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What is Caffe?

Prototype Train Deploy

Open framework, models, and worked examples
for deep learning
‑ 2 years old
‑ 2,000+ citations, 200+ contributors, 10,000+ stars
‑ 7,000+ forks, >1 pull request / day average
‑ focus has been vision, but branching out:

sequences, reinforcement learning, speech + text
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What is Caffe?

Prototype Train Deploy

Open framework, models, and worked examples
for deep learning
‑ Pure C++ / CUDA architecture for deep learning
‑ Command line, Python, MATLAB interfaces
‑ Fast, well-tested code
‑ Tools, reference models, demos, and recipes
‑ Seamless switch between CPU and GPU
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Caffe is a Community                          project pulse
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https://github.com/BVLC/caffe/pulse/monthly


Caffe offers the
- model definitions
- optimization settings
- pre-trained weights

so you can start right away

The BVLC models are 
licensed for unrestricted use

The community shares 
models in our Model Zoo

Reference Models

GoogLeNet: ILSVRC14 winner
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https://github.com/BVLC/caffe/wiki/Model-Zoo


Embedded Caffe

- same model weights,
same framework interface

- out-of-the-box on
CUDA platforms

- OpenCL port
thanks Fabian Tschopp!
+ AMD, Intel, and the community

- community Android port
thanks sh1r0!
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CUDA Jetson TX1, TK1

Android lib, demo

OpenCL branch

Caffe runs on embedded CUDA hardware and mobile devices

http://www.nvidia.com/object/jetson-tx1-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://github.com/sh1r0/caffe-android-lib
https://github.com/sh1r0/caffe-android-demo
https://github.com/BVLC/caffe/tree/opencl
https://github.com/BVLC/caffe/tree/opencl


Industrial and Applied Caffe
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… startups, big companies, more ...



- in production for vision at scale:
uploaded photos run through Caffe

- Automatic Alt Text for the blind

- On This Day for surfacing memories

- objectionable content detection

- contributing back to the community: 
inference tuning, tools, code review
include fb-caffe-exts thanks Andrew!

Caffe at Facebook
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Automatic Alt Text
recognize photo content

for accessibility

[example credit Facebook]

On This Day
highlight content

https://github.com/facebook/fb-caffe-exts


Caffe at Pinterest
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- in production for vision at scale:
uploaded photos run through Caffe

- deep learning for visual search:
retrieval over billions of images
in <250 ms

- ~4 million requests/day

- built on an open platform of
Caffe, FLANN, Thrift, ...

[example credit Andrew Zhai, Pinterest]



Caffe at Yahoo! Japan
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- curate news and restaurant 
photos for recommendation

- arrange user photo albums

News Image Recommendation
select and crop images for news



Share a Sip of Brewed Models

demo.caffe.berkeleyvision.org
demo code open-source and bundled
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http://demo.caffe.berkeleyvision.org/
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Scene Recognition http://places.csail.mit.edu/

B. Zhou et al. NIPS 14
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http://places.csail.mit.edu/


Visual Style Recognition

Other Styles:

Vintage
Long Exposure
Noir
Pastel
Macro
… and so on.

Karayev et al. Recognizing Image Style. BMVC14. Caffe fine-tuning example.
Demo online at http://demo.vislab.berkeleyvision.org/ (see Results Explorer).

[ Image-Style] 44

http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/


Fast R-CNN
- convnet for features
- proposals for detection

Ross Girshick, Shaoqing Ren, 
Kaiming He, Jian Sun

Faster R-CNN
- end-to-end proposals and detection
- image inference in 200 ms
- Region Proposal Net + Fast R-CNN

papers + code online

R-CNNs: Region-based Convolutional Networks

Object Detection
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https://github.com/rbgirshick/fast-rcnn
https://github.com/rbgirshick/fast-rcnn
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn


Fully convolutional networks for pixel prediction
in particular semantic segmentation

- end-to-end learning
- efficient inference and learning

100 ms per-image prediction
- multi-modal, multi-task

Pixelwise Prediction

Applications
- semantic segmentation
- denoising
- depth estimation
- optical flow

Jon Long* & Evan Shelhamer*,
Trevor Darrell. CVPR’15CVPR'15 paper and code + models 46

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf
http://fcn.berkeleyvision.org


Recurrent Nets and Long Short Term Memories (LSTM) 
are sequential models

- video
- language
- dynamics

learned by backpropagation through time

Recurrent Networks for Sequences

LRCN: Long-term Recurrent Convolutional Network
- activity recognition (sequence-in)
- image captioning (sequence-out)
- video captioning (sequence-to-sequence)
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LRCN:
recurrent + convolutional 
for visual sequences

CVPR'15 paper and code + models

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
http://jeffdonahue.com/lrcn/


Visual Sequence Tasks

Jeff Donahue et al. CVPR’15 48



Deep Visuomotor Control

Sergey Levine* & Chelsea Finn*,
Trevor Darrell, and Pieter Abbeel

example experiments feature visualization
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http://youtube.com/v/oTfGzObMqQI
http://youtube.com/v/RgQEA9LFWjQ


Yangqing Jia, Evan Shelhamer, Jeff Donahue, Jonathan Long,
Sergey Karayev, Ross Girshick, Sergio Guadarrama, Ronghang Hu, Trevor Darrell

Thanks to the Caffe Crew

and our open source contributors!
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...plus the cold-brew

https://github.com/BVLC/caffe/graphs/contributors
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Want to get a jump start in using convolutional neural 
networks (CNNs) for vision applications?

Sign up for a day-long tutorial on CNNs for deep learning 
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