

LEARNING AT THE SPEED OF SIGHT

Paul Werp Shang-Hung Lin Mahadev S. Kolluru

(mahadev.kolluru@verisilicon.com)

10/19/2016

VeriSilicon Global Operations

Founded in 2001, currently 650+ employees

▲ 70% dedicated to R&D

IP-centric, Platform-Based, End-to-End Turnkey Service

End-to-end Turnkey Service

- **Tape-out one chip a week; 50 chips a year**
- ▲ Foundry neutral
- ▲ 98% first silicon success

Diversified Customer Base for Growing End Markets

Silicon Platform as a Service (SiPaaS) Example

Movement of Intelligent Devices

▲ Multi-Media

► Graphics, Video, Audio, Voice

A Natural User Interface

- ► VISION
- Natural Language Processing
- Sensors

Vision Processing

- ▲ Wide range of applications, thousands of algorithms
- ▲ New applications come up everyday
- ▲ Compute intensive need HW acceleration
- ▲ Best algorithm keeps changing need programmable solution

Deep Learning: Neural Networks Return with Vengeance

▲ With big data and high density compute, deep neural networks can be trained to solve "impossible" computer vision problems

IM & GENET

The Basics of Deep Neural Networks (DNN)

▲ Training: 10¹⁶-10²² MACs/dataset

Computer Vision Problems That DNN is Good at Solving

Classification

dog
car
horse
bike
cat
bottle
perso

car person horse

Segmentation

Challenges of Real-Time Inference

▲ Majority of deep neural net computation is Multiply-Accumulate (MAC) for convolutions and inner products

- ▲ Memory bandwidth is a bigger challenge
 - Convolution in deep neural nets works with not just 2D images, but high-dimensional arrays (i.e. "tensor")
 - Example: AlexNet (classification) has 60M parameters (240MB FP32), DDR BW with brute force implementation: 35GB/s

Embedded Vision: Common Acceleration Strategies

	Description	Pro's	Con's	Notes		
Fixed Function HW	Specialty Logic that performs a single set of vision functions	Small / Fast	Not flexible. Algorithm stuck in time.	Vision algorithms evolve very quickly		
Proprietary Vision Engine	Group of DSP devices that perform 2D calculates quickly	Power Efficiency	Algorithms are not portable, Architecture is usually also proprietary	Initial algorithm optimization commitment forces long term investment in a single HW Vendor		
GPU	Leverage the ~10x compute power of a GPU for general compute	High Performance Availability Code Portability	Power Consumption Not efficient for sparse compute	Usually requires a CPU to perform control and classification tasks		
CPU	Quickly leverage the CPU to perform the vision algorithm from top to bottom.	Code Portability Time to market Well understood	Lower compute throughput Shared with OS and other apps	Performance bound and not ideal for dense compute		
CPU SIMD	CPU SIMD instruction set utilized for the higher compute performance	Available Speed increase in performance	SIMD setup overhead is high Performance is still bound by CPU being shared by OS and other apps	Useful, but reduces algorithm flexibility because SIMD instruction intrinsic are not well supported in general compilers		

Efficient Processor Architecture to Enable DNN for Embedded Vision

Unified programming model to synchronize all blocks under industry standard API

- Programmable engine to cope with new CV algorithms
- Future new NN layers can be implemented here
- **Scalable** architecture to support different PPA (Performance, Power, Area) requirements

Scalable architecture to support different PPA (Performance, Power, Area) requirements

- (normalization, pooling,...)
- Handles pruning, compression, batching... to increase MAC utilization and decrease DDR BW

I/F to extend HW acceleration

between threads/blocks and

VeriSilicon Vision Image Processor (VIP)

VIP8000 Architecture

- A Programmable Engine
 - 128-bit vector processing unit (shader)
 - OpenCL shader instruction set
 - Enhanced vision instruction set (EVIS)
 - INT 8/16/32b, Float 16/32b
- **NN Engine**
 - Convolution and inner products
 - 128 MACS/cycle per core
 - INT8 or Float16
- ▲ Tensor Processing Fabric
 - Data shuffling, normalization, pooling/unpooling, LUT, etc.
 - Network pruning support, zero skipping, compression
 - Accepts INT8 and Float16 (Float16 internal)

USC

- Configurable Local memory and L1 cache to pass data among shaders, NN, and HW accelerators
- Number of shader cores and NN cores can be independently configured

VIP8000 Features

- ▲ Unified Programming Model
 - OpenCL, OpenVX
 - Parallel processing between shaders and HW accelerators
 - EVIS Built-in functions to expose HW acceleration to programmers
 - Support popular vision and deep learning frameworks

▲ Scalability

- Number of shaders and NN cores can be configured independently
- Same OpenVX/OpenCL code runs on all processor variants; scalable performance

Extendibility

- ► VIP-ConnectTM: HW and SW I/F protocol to plug in customer HW accelerators and expose functionality to programmers via EVIS Built-in
- Reconfigurable EVIS for user to define own instructions
- ▲ 24/7 Low Power Operations
 - Optimized RTL for mature and commonly used CV functions

Scalable Performance from VIP8000

VIP8000 Series	VIP Nano	VIP8000UL	VIP8000L	VIP8000			
Number of Execution cores	1	2	4	8			
Clock Frequency SVT @WC125C (MHz)	800	800	800	800			
HD Performance@800MHz							
Perspective Warping	60 fps	120 fps	240 fps	480 fps			
Optical Flow LK	30 fps	60 fps	120 fps	240 fps			
Pedestrian Detection	30 fps	60 fps	120 fps	240 fps			
Convolutional Neural Network (AlexNet)	125 fps	250 fps	500 fps	1000 fps			

▲ Scalable performance with SAME application code on different processor variants

Use Case Study: Always-On Camera

Dewarp and scale input frame, Store result to on-chip SRAM

Run classification or detection Store result to on-chip SRAM Dewarp and scale next frame simultaneously

Use Case Study: Faster RCNN

▲ One of state-of-the-art object detection CNNs

- Network configuration
 - 300 region proposals
 - 60M parameters, 30G MACs/image

▲ Collaborative computing in VIP

- NN Engine: number crunching
 - Convolution layers, full connected layers
- Tensor Processing Fabric: data rearrangement
 - LRN, max pooling, ROI pooling
- Programmable Engine: precision compute
 - RPN, NMS, softmax

▲ Real-time performance (30fps HD) under 0.5W @ 28nm HPM

Output of a layer is queued in DDR if next layer is on different processing engine

Various API Choices for Creating Vision Apps

- API Supported for VIP acceleration:
 - OpenCL
 - OpenVX
 - OpenCV
- ▲ Wide Range of OS Supported:
 - Android
 - Linux
 - Chrome
 - Ubuntu
 - Windows
 - Wind River
 - QNX
 - Green Hills

VIP Program Example

#include "cl_viv_vx_ext.h" viv uniform int height; __kernel void gaussian3x3 __read_only image2d_t in_image, __write_only image2d_t out_image int2 coord = (int2)(get_global_id(0), get_global_id(1)); int2 coord1 = coord + (int2)(-1, -1); vxc uchar16 v0, v1; VXC_ReadImage(v0, in image, coord1, 0, VXC_MODIFIER(0, 15, 0, VXC_RM_TowardZero, 0)); int2 coord2 = coord + (int2)(-1, 0); VXC_ReadImage(v1, in_image, coord2, 0, VXC_MODIFIER(0, 15, 0, VXC_RM_TowardZero, 0)); int info = VXC MODIFIER(0, 13, 0, VXC RM TowardZero, 0); int infox = VXC MODIFIER FILTER(0, 13, 0, VXC FM Guassian, 0); do int2 coord3 = coord + (int2)(-1, 1); vxc uchar16 v2; VXC_ReadImage(v2, in_image, coord3, 0, VXC_MODIFIER(0, 15, 0, VXC_RM_TowardZero, 0)); vxc_uchar16 p_out; VXC_Filter(p_out, v0, v1, v2, infox); VXC WriteImage(out image, coord, p out, info); v0 = v1;v1 = v2;coord.y++; while(coord.y<height);</pre> - -

▲ OpenCL Programming

- Simple control; multi-thread data read/write scheduled by HW
- Automatic image border handling

EVIS Built-In

÷ ▲

- Intrinsic functions for vision acceleration
- Ex: VXC_Filter() produces 14 filtered pixel outputs (per processor core) in one cycle

▲ Scalability

Same program runs on single or multiple cores

Computer Vision Acceleration

▲ Special HW acceleration for computer vision and machine learning

- Easy programming with EVIS built-in
- Significant improvement on PPA (Power, Performance, Area)

kernel void cnn layer(

__read_only void* network_descriptor,

OpenCL code

OpenVX Neural Net Extension

- Convolutional Neural Network topologies can be represented as OpenVX graphs
 - Layers are represented as OpenVX nodes
 - Layers connected by multi-dimensional tensors objects
 - Layers include convolution, normalization, pooling, fully-connected, soft-max
 - Also activation layers with nine different activation functions
 - CNN nodes can be mixed with traditional vision nodes
- Import/Export Extension
 - Efficient handling of network weights/biases or complete networks

• The specification is provisional

- Seeking feedback from the deep learning community

Running Caffe CNN in OpenVX

- VeriSilicon VIP8000 offers a unified SW framework to run OpenVX and CNN
- ▲ Simply create a CNN node in a OpenVX graph, and configure the node with the caffemodel and prototxt files from Caffe

What is ahead of us

▲ Deep neural net has come to embedded space for visual recognition

▲ More sophisticated recognition demands are just around the corner

- Vision + natural language processing
- Action recognition
- Multi-sensor, high-dimensional data input

A scalable, extendible processor architecture with unified programming model brings "natural user interface" to embedded systems

www.verisilicon.com

Empowering Product Creators to Harness Embedded Vision

The Embedded Vision Alliance (<u>www.Embedded-Vision.com</u>) is a partnership of 50+ leading embedded vision technology and services suppliers

Mission: Inspire and empower product creators to incorporate visual intelligence into their products

The Alliance provides low-cost, high-quality technical educational resources for product developers

Register for updates at <u>www.Embedded-Vision.com</u>

The Alliance enables vision technology providers to grow their businesses through leads, ecosystem partnerships, and insights

For membership, email us: membership@Embedded-Vision.com

29

Join us at the Embedded Vision Summit May 1-3, 2017—Santa Clara, California

The only industry event focused on enabling product creators to create "machines that see"

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2017 highlights:

- Inspiring keynotes by leading innovators
- High-quality, practical technical, business and product talks
- Exciting **demos** of the latest apps and technologies

Visit <a>www.EmbeddedVisionSummit.com to sign up for updates

