Efficient Processing for Deep Learning: Challenges and Opportunities

Vivienne Sze

Massachusetts Institute of Technology

Video is the Biggest Big Data

Over 70% of today's Internet traffic is video Over 300 hours of video uploaded to YouTube <u>every minute</u> Over 500 million hours of video surveillance collected <u>every day</u>

Need energy-efficient pixel processing!

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

Input Image (Feature Map)

Input Image (Feature Map)

Element-wise Multiplication

Sliding Window Processing

Many Input Channels (C)

OF ELECTRONICS AT MIT

l'liī

Large Sizes with Varying Shapes

AlexNet¹ Convolutional Layer Configurations

Layer	Filter Size (R)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

Layer 1

34k Params 105M MACs Layer 2

307k Params 224M MACs

885k Params 150M MACs

Popular CNNs

- LeNet (1998)
- AlexNet (2012)
- OverFeat (2013)
- VGGNet (2014)
- GoogleNet (2014)
- ResNet (2015)

ImageNet: Large Scale Visual Recognition Challenge (ILSVRC)

[O. Russakovsky et al., IJCV 2015]

Summary of Popular CNNs

15

IIIiī

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5,11	3	1, 3 , 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	341k	724M	15.5G	1.43G	3.9G

CONV Layers increasingly important!

¹⁶ Training vs. Inference

17

Challenges

Key Metrics

• Accuracy

18

 Evaluate hardware using the appropriate DNN model and dataset

Programmability

- Support multiple applications
- Different weights

• Energy/Power

- Energy per operation
- DRAM Bandwidth

Throughput/Latency

GOPS, frame rate, delay

• Cost

Area (size of memory and # of cores)

ImageNet

RESEARCH LABORATORY

Opportunities in Architecture

GPUs and CPUs Targeting Deep Learning

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016)

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Use matrix multiplication libraries on CPUs and GPUs

Accelerate Matrix Multiplication

- Implementation: Matrix Multiplication (GEMM)
 - CPU: OpenBLAS, Intel MKL, etc
 - GPU: cuBLAS, cuDNN, etc
- Optimized by tiling to storage hierarchy

²² Map DNN to a Matrix Multiplication

Convert to matrix mult. using the Toeplitz Matrix

Goal: Reduced number of operations to increase throughput

23 Computation Transformations

- Goal: Bitwise same result, but reduce number of operations
- Focuses mostly on compute

Analogy: Gauss's Multiplication Algorithm

$$(a+bi)(c+di)=(ac-bd)+(bc+ad)i.$$

4 multiplications + 3 additions

$$k_{1} = c \cdot (a + b)$$

$$k_{2} = a \cdot (d - c)$$

$$k_{3} = b \cdot (c + d)$$
Real part = $k_{1} - k_{3}$
Imaginary part = $k_{1} + k_{2}$.
3 multiplications + 5 additions

Reduce number of multiplications, but increase number of additions

²⁵ Reduce Operations in Matrix Multiplication

- Winograd [Lavin, CVPR 2016]
 - Pro: 2.25x speed up for 3x3 filter
 - Con: Specialized processing depending on filter size
- Fast Fourier Transform [Mathieu, ICLR 2014]
 - **Pro:** Direct convolution $O(N_o^2 N_f^2)$ to $O(N_o^2 \log_2 N_o)$
 - Con: Increase storage requirements
- Strassen [Cong, ICANN 2014]
 - Pro: O(N³) to (N^{2.807})
 - Con: Numerical stability

²⁶ cuDNN: Speed up with Transformations

60x Faster Training in 3 Years

AlexNet training throughput on:

CPU: 1x E5-2680v3 12 Core 2.5GHz. 128GB System Memory, Ubuntu 14.04

M40 bar: 8x M40 GPUs in a node, P100: 8x P100 NVLink-enabled

Source: Nvidia

Specialized Hardware (Accelerators)

14ii -

Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

Worst Case: all memory R/W are **DRAM** accesses

Example: AlexNet [NIPS 2012] has 724M MACs
 → 2896M DRAM accesses required

²⁹ Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Input data reuse opportunities (up to 500x)

→ exploit **low-cost memory**

Images

In Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Advantages of Spatial Architecture

Data Movement is Expensive

Processing Engine

Data Movement Energy Cost

Maximize data reuse at lower levels of hierarchy

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

[Gupta, *ICML* 2015] [ShiDianNao, *ISCA* 2015] [Peemen, *ICCD* 2013]

35 No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

Row Stationary Dataflow

Dataflow Comparison: CONV Layers

Eyeriss Deep CNN Accelerator

Comparison with GPU

	Eyeriss	NVIDIA TK1 (Jetson Kit)	
Technology	65nm	28nm	
Clock Rate	200MHz	852MHz	
# Multipliers	168	192	
On-Chip Storage	Buffer: 108KB Spad: 75.3KB	Shared Mem: 64KB Reg File: 256KB	
Word Bit-Width	16b Fixed	32b Float	
Throughput ¹	34.7 fps	68 fps	
Measured Power	278 mW	Idle/Active ² : 3.7W/10.2W	
DRAM Bandwidth	127 MB/s	1120 MB/s ³	

- 1. AlexNet Convolutional Layers Only
- 2. Board Power
- 3. Modeled from [Tan, SC11]

http://eyeriss.mit.edu

39

⁴⁰ Features: Energy vs. Accuracy

RESEARCH LABORATORY OF ELECTRONICS AT MIT

ms technology laboratories

Opportunities in Joint Algorithm Hardware Design

42 Approaches

- <u>Reduce size</u> of operands for storage/compute
 - Floating point \rightarrow Fixed point
 - Bit-width reduction
 - Non-linear quantization
- <u>Reduce number</u> of operations for storage/compute
 - Exploit Activation Statistics (Compression)
 - Network Pruning
 - Compact Network Architectures

43 Commercial Products using 8-bit Integer

Nvidia's Pascal (2016)

Google's TPU (2016)

Reduced Precision in Research

Reduce number of bits

- Binary Nets [Courbariaux, NIPS 2015]

Reduce number of unique weights

- Ternary Weight Nets [Li, arXiv 2016]
- XNOR-Net [Rategari, ECCV 2016]

Non-Linear Quantization

- LogNet [Lee, ICASSP 2017]

Log Domain Quantization

Binary Filters

Plii

45 Sparsity in Feature Maps

Many zeros in output fmaps after ReLU

OF ELECTRONICS AT MIT

Exploit Sparsity

Method 1: Skip memory access and computation

Method 2: Compress data to reduce storage and data movement

ms technology laboratories

⁴⁷ Pruning – Make Weights Sparse

Optimal Brain Damage

[Lecun et al., NIPS 1989]

Prune DNN based on *magnitude* of weights [Han et al., NIPS 2015]

Network Architecture Design

Build Network with series of Small Filters

GoogleNet/Inception v3

Apply sequentially

VGG-16

Apply sequentially

48

1x1 Bottleneck in Popular DNN models

49

stems technology laboratories

50 Key Metrics for Embedded DNN

- Accuracy → Measured on Dataset
- Speed \rightarrow Number of MACs
- Storage Footprint → Number of Weights
- Energy \rightarrow ?

51 Energy-Evaluation Methodology

Hardware Energy Costs of each MAC and Memory Access

T MIT

Illi Energy estimation tool available at http://eyeriss.mit.edu

52 Key Observations

- Number of weights *alone* is not a good metric for energy
- All data types should be considered

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

53

[Yang et al., CVPR 2017]

Magnitude-based Weight Pruning

Reduce number of weights by **removing small magnitude weights**

54

Energy-Aware Pruning

3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet

55

[Yang et al., CVPR 2017]

Energy-Efficient Approaches

- Minimize data movement
- Balance flexibility and energy-efficiency
- Exploit sparsity with joint algorithm and hardware design
- Joint algorithm and hardware design can deliver additional energy savings (directly target energy)
- Linear increase in accuracy requires exponential increase in energy

Acknowledgements: This work is funded by the DARPA YFA grant, MIT Center for Integrated Circuits & Systems, and gifts from Intel, Nvidia and Google.

Overview Paper

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "*Efficient Processing of Deep Neural Networks: A Tutorial and Survey*", arXiv, 2017 <u>https://arxiv.org/pdf/1703.09039.pdf</u>

More info about Eyeriss and Tutorial on DNN Architectures http://eyeriss.mit.edu

MIT Professional Education Course on **"Designing Efficient Deep Learning Systems"** *March 26 – 27, 2018 in Mountain View, CA* <u>http://professional-education.mit.edu/deeplearning</u>

For updates **Y** Follow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news

The Embedded Vision Alliance (<u>www.Embedded-Vision.com</u>) is a partnership of ~70 leading embedded vision technology and services suppliers

Mission: Inspire and empower product creators to incorporate visual intelligence into their products

The Alliance provides low-cost, high-quality technical educational resources for product developers

Register for updates at www.Embedded-Vision.com

The Alliance enables vision technology providers to grow their businesses through leads, ecosystem partnerships, and insights

For membership, email us: membership@Embedded-Vision.com

Embedded Vision Insights The Latest Developments on Designing Machines that See

Join us at the Embedded Vision Summit May 22-24, 2018–Santa Clara, California

The only industry event focused on enabling product creators to create "machines that see"

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2018 highlights:

- Inspiring keynotes by leading innovators
- High-quality, practical technical, business and product talks
- Exciting demos of the latest apps and technologies

Visit <u>www.EmbeddedVisionSummit.com</u> to sign up for updates

